On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models
نویسندگان
چکیده
Dynamic Takagi-Sugeno fuzzy models are not always easy to interpret, in particular when they are identified from experimental data. Ideally, it is desirable that a dynamic Takagi-Sugeno fuzzy model should give accurate global nonlinear prediction and at the same time that its local models are close approximations to the local linearizations of the nonlinear dynamic system. The latter is important in many applications where the constituent local models are used individually and aids validation and interpretation of the model considerably. This defines a multi-objective identification problem, namely, the construction of a dynamic model that is a good approximation of both local and global dynamics of the underlying system. While these objectives are often conflicting, it is shown that there exists a close relationship between dynamic Takagi-Sugeno fuzzy models and dynamic linearization when using affine local model structures, which suggests that a solution to the multi-objective identification problem exists. However, it is also shown that the affine local model structure is a highly sensitive parameterization when applied in transient operating regimes, i.e., far away from equilibrium. The reason is essentially that the constant term in the affine local model tends to dominate over the linear term during transients. In addition, it is inherently more difficult to design informative experiments in transient regions compared to near-equilibrium regions. Due to the multi-objective nature of the identification problem studied here, special considerations must be made during model structure selection, experiment design, and identification in order to meet both objectives. Some guidelines for experiment design are suggested and some robust nonlinear identification algorithms are studied. These include constrained and regularized identification and locally weighted identification. Their usefulness in the present context is illustrated by examples.
منابع مشابه
Design of nonlinear parity approach to fault detection and identification based on Takagi-Sugeno fuzzy model and unknown input observer in nonlinear systems
In this study, a novel fault detection scheme is developed for a class of nonlinear system in the presence of sensor noise. A nonlinear Takagi-Sugeno fuzzy model is implemented to create multiple models. While the T-S fuzzy model is used for only the nonlinear distribution matrix of the fault and measurement signals, a larger category of nonlinear systems is considered. Next, a mapping to decou...
متن کاملA New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models
Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...
متن کاملIdentification of Cement Rotary Kiln in Noisy Condition using Takagi-Sugeno Neuro-fuzzy System
Cement rotary kiln is the main part of cement production process that have always attracted many researchers’ attention. But this complex nonlinear system has not been modeled efficiently which can make an appropriate performance specially in noisy condition. In this paper Takagi-Sugeno neuro-fuzzy system (TSNFS) is used for identification of cement rotary kiln, and gradient descent (GD) algori...
متن کاملIEEE International Conference on Fuzzy Systems, San Antonio,
Inverse fuzzy process model based direct adaptive control. [2] J. Abonyi and R. Babuška. Local and global identification and interpretation of parameters in Takagi–Sugeno fuzzy models. In Proceed-[3] J. Abonyi and R. Babuška. Local and global identification and interpretation of parameters in Takagi–Sugeno fuzzy models. In Proceed-tification and control of nonlinear systems using fuzzy Hammerst...
متن کاملLocal and global identification and interpretation of parameters in Takagi–Sugeno fuzzy models
This paper addresses the interpretation of parameters in Takagi-Sugeno (TS) fuzzy models. The analysis is presented for the dynamic gain and steady-state representation, but it holds for parameters related to the dynamics as well. The TS model interpolates between local linear models. The overall gain obtained by interpolating the gains of the local models can be interpreted as the local dynami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Fuzzy Systems
دوره 8 شماره
صفحات -
تاریخ انتشار 2000